logo
メッセージを送る
  • Japanese
ホーム 製品Polyaspartic FAQ

Curing Mechanism of Polyaspartic

認証
中国 SHENZHEN FEIYANG PROTECH CORP.,LTD 認証
中国 SHENZHEN FEIYANG PROTECH CORP.,LTD 認証
顧客の検討
FEIYANGは私達に専門職業的業務およびプロダクトを提供した。そういうわけで私達は数年の間それらとの長期および安定したビジネスがあった。この頃は、私達は彼らのディストリビューターのちょうど1の代りにパートナーのような多くである。また、私は私達が一緒に市場を将来拡大してもいいことを望む。

—— 米国のディストリビューター

Feiyangは信頼できる製造者、だけでなく、製品品質しかしまた専門のテクニカル サポートおよびサービスである。私達は何もからの複数の容器に私達のビジネスの成長に毎年貢献した6年間ビジネスを既に一緒にした。私達はとても幸せ、幸運私達のパートナーとしてFeiyangがあるためにである。

—— ヨーロッパのディストリビューター

私達はオーストラリアのFeiyangのディストリビューターの1才で非常に幸せである。彼らはかなり良い製造者である。それらは私達の条件を満たすために全力を常に尽くす。私達の顧客はまたFeiyangの良質プロダクトおよび顕著なサービスを信頼する。先に見ることより多くのビジネスを一緒に開発することに。

—— オーストラリアのディストリビューター

オンラインです

Curing Mechanism of Polyaspartic

Curing Mechanism of Polyaspartic
Curing Mechanism of Polyaspartic

大画像 :  Curing Mechanism of Polyaspartic

商品の詳細:
Place of Origin: Zhuhai, China
ブランド名: Zhuhai Feiyang
証明: ISO 9001-2015, ISO 14001-2015
Model Number: Curing Mechanism of Polyaspartic
お支払配送条件:
Minimum Order Quantity: 200kg
Packaging Details: 200kgs net weight in a steel drum
Delivery Time: 7 days after orders comfirmed
Payment Terms: L/C, T/T
Supply Ability: More than 20000 tons per year

Curing Mechanism of Polyaspartic

説明

The curing of polyaspartic is based on a unique chemical reaction mechanism involving a highly efficient cross-linking reaction between isocyanates and aspartic esters, resulting in a dense three-dimensional network structure.


Fundamental Chemical Reaction
Polyaspartic curing is essentially a stepwise polymerization reaction between isocyanate groups (-NCO) and amine groups (-NH₂) from aspartic esters, forming urea linkages (-NH-CO-NH-). The reaction can be expressed as:

{R-NCO} + {R'-NH} → {R-NH-CO-NH-R'}

This is an exothermic reaction, rapidly forming polymer chains and establishing cross-linking sites to create a network structure.


Three Stages of the Curing Process
Polyaspartic curing occurs in three stages determined by the molecular structure of the aspartic ester.

1.Induction stage (delayed reaction)

Ester groups (-COOR) within the aspartic ester molecule temporarily inhibit the reactivity of amine groups (-NH₂) due to steric hindrance and electronic effects, delaying the initial reaction with isocyanate. This stage provides an operational window (typically 10-30 minutes) for mixing, spraying, or rolling.

2.Rapid cross-linking stage

With rising temperature or after the induction stage, amine reactivity increases, reacting rapidly with isocyanate to produce numerous urea linkages. In a short period (1-2 hours), a high-strength cross-linked network forms, achieving rapid curing. 3.Post-curing stage

Residual -NCO groups continue reacting with ambient moisture or unreacted amines, further increasing cross-linking density and reaching final mechanical properties (such as tensile strength and abrasion resistance) within 24-48 hours.


Key Role of Aspartic Ester
Aspartic ester acts as a latent chain extender, optimizing the curing process through the following characteristics:

  • Controllable reaction rate—steric hindrance from ester groups regulates reaction reactivity, balancing application time and curing efficiency.
  • Low-temperature adaptability—maintaining reactivity at low temperatures (e.g., -10°C), avoiding curing failures experienced by traditional polyureas at low temperatures.
  • Environmental friendliness—reducing the release of volatile organic compounds (VOCs) to comply with green construction requirements.


Comparison with Traditional Polyurea

Curing Mechanism of Polyaspartic 0


Influence of Curing on Performance

  • High strength and abrasion resistance: High cross-linking density imparts excellent mechanical properties (tensile strength >20 MPa, abrasion <40 mg in Taber tests).
  • Chemical resistance: Dense structures resist penetration by acids, bases, and salt mist, suitable for chemical plants and marine environments.
  • Weather resistance: Aliphatic isocyanate backbone offers UV resistance, preventing yellowing or cracking in long-term use.
  • Elasticity and adhesion: Flexible segments (e.g., polyether chains) provide high elongation (>300%) and strong adhesion to substrates (concrete and metal).


Practical Control of Curing in Application

  • Mixing ratio: Isocyanate and aspartic ester must be strictly mixed in accurate proportions (e.g., 1:1) to prevent residual unreacted monomers.
  • Temperature control: Catalysts (e.g., organotin compounds) can be added in low-temperature environments, while application times must be reduced in high-temperature environments.
  • Humidity control: Moisture in the air can react with isocyanates, generating CO₂ as a side reaction; environmental humidity should be controlled below 80%.


Technological Development Trends

  • Smart curing systems: Developing photo-curable or temperature-triggered polyaspartic systems to achieve curing on-demand.
  • Bio-based materials: Utilizing plant-derived aspartic esters to reduce dependence on petrochemical resources.
  • Self-healing functions: Introducing dynamic bonds (e.g., Diels-Alder bonds) into the cross-linking network to achieve self-repair of minor coating damages.

 

The curing principle of polyaspartic, through a strategic combination of delayed reaction and rapid cross-linking, ensures controlled application processes and efficient curing. The designable chemical structure offers broad potential for future material performance optimization and novel application developments.

 

Feiyang has been specializing in the production of raw materials for polyaspartic coatings for 30 years and can provide polyaspartic resins, hardeners and coating formulations.

Feel free to contact us: marketing@feiyang.com.cn

 

Our products list:

 

Contact our technical team today to explore how Feiyang Protech’s advanced polyaspartic solutions can transform your coatings strategy. Contact our Tech Team

 

 

 

 

連絡先の詳細
SHENZHEN FEIYANG PROTECH CORP.,LTD

コンタクトパーソン: Annie Qing

電話番号: +86 18307556691

ファックス: 86-183-07556691

私達に直接お問い合わせを送信 (0 / 3000)